AI Coding 何必非得通用?实测“最会做游戏的 AI Coding” Gambo,玩到停不下来
AI Coding 何必非得通用?实测“最会做游戏的 AI Coding” Gambo,玩到停不下来Gambo 称自己为 “世界上第一个 Game Vibe Coding Agent”。用户只需描述游戏类型、主题或风格,AI 就会自动生成场景、角色、交互与音效,并把这些内容编织成一个可玩的世界。
Gambo 称自己为 “世界上第一个 Game Vibe Coding Agent”。用户只需描述游戏类型、主题或风格,AI 就会自动生成场景、角色、交互与音效,并把这些内容编织成一个可玩的世界。
斯坦福等新框架,用在线强化学习让智能体系统“以小搏大”,领先GPT-4o—— AgentFlow,是一种能够在线优化智能体系统的新范式,可以持续提升智能体系统对于复杂问题的推理能力。
在 AI 时代,最赚钱的可能不是那些会写代码的人,而是那些能把专业经验「产品化」的人。大量专业人士手里握着宝贵的行业 know-how,却找不到一个合适的方式把它变成持续收入。直到我看到 MuleRun,才发现有人正在尝试打破这个困局——让不懂代码的专业人士,也能把自己的工作流变成可交易的「商品」。
近日,Zen7 Labs正式提出DePA(Decentralized Payment Agent,去中心化支付智能体)概念,并率先在GitHub 上开源其核心产品Zen7 Payment Agent。Zen7 Labs 是一家专注于智能计算与 Agent 技术创新的国际化团队
虽然浏览器 AI agent 的概念听起来很美好,但实际构建这样的系统却面临巨大挑战。这正是 Kernel 要解决的核心问题。我发现很多开发者想要构建 AI agent,但却在基础设施层面遇到了各种障碍:性能不稳定、运行时间不可靠、定价不合理、身份认证复杂、权限管理混乱,以及一个本来就不是为 agent 设计的互联网世界。
传闻许久的 OpenAI AI Agent 浏览器,如今这个靴子终于正式落地。但 AI 浏览器已经是巨头新贵正在不断涌入的赛道,OpenAI 还未正式下场,就已经有了十足的火药味:预热推文评论区最高赞的评论,就是一名用户表示自己已经卸载了 Chrome,等待 Atlas,颇有点「打扫卫生再请客」的感觉。
来自硅谷一线 AI 创业者的数据:95% 的 AI Agent 在生产环境都部署失败了。 「不是因为模型本身不够智能,而是因为围绕它们搭建的脚手架,上下文工程、安全性、记忆设计都还远没有到位。」 「大多数创始人以为自己在打造 AI 产品,但实际上他们构建的是上下文选择系统。」
近日刚好得了空闲,在研读 Anthropic 官方技术博客和一些相关论文,主题是「Agent 与 Context 工程」。2025 年 6 月以来,原名为「Prompt Engineering」的提示词工程,在 AI Agent 概念日趋火热的应用潮中,
中科院的这篇工作解决了“深度搜索智能体”(deep search agents),两个实打实的工程痛点,一个是问题本身不够难导致模型不必真正思考,另一个是上下文被工具长文本迅速挤爆导致过程提前夭折,研究者直面挑战,从数据和系统两端同时重塑训练与推理流程,让复杂推理既有用又能跑得起来。
在训练多轮 LLM Agent 时(如需要 30 + 步交互才能完成单个任务的场景),研究者遇到了一个严重的训练不稳定问题:标准的强化学习方法(PPO/GRPO)在稀疏奖励环境下表现出剧烈的熵值震荡,导致训练曲线几乎不收敛。